通过绘画图像并总结与相应的特点与性质
2019-12-09 12:54
来源:未知
点击数:           

与抽象的图像数据相比,图像在表现数学知识方面显得更加的直观和清晰。因此,为了使学生更好的理解掌握函数知识,在数学教学过程中,教师应该更多的应用函数图像,一方面这种方式可以使变量的表达更加的直观,能够清晰明了的表达出变量之间的相互约束、相互限制的关系;另一方面,这种直观的函数图像能够使思维理解能力稍有不足的学生可以更牢固的记忆函数变量之间的关系,使学生更好地掌握函数知识。这种图像教学方式要求老师在课堂教学中能够时常的带领学生挑选代表性的函数,并且带领学生进行函数图像的绘制。绘图就会耽误一定的上课时间,但是这样做不仅能够让学生更好的理解函数,同时还能够提高学生的动手能力。初中大多数的函数老师总结出这样的结论,一般不会绘制函数图像的学生都很难把函数学好,关键原因是他们不理解函数变量之间的关系,没有正确理解函数的概念。所以,教师如何利用函数图象教学变得十分的重要,如何通过教学生绘制函数效果图来提高学生的学习质量和函数教学对初中函数教学来说显得尤为关键。

在初中数学教学中,尤其是对数学教学中的难点和关键性的线性函数问题,要求数学教师能够很好的联系实际生活中的问题,善于运用更适合学生的方法去教学,使学生能够更深入体会函数知识的概念,这样的教学不仅可以提高线性函数教学的质量,同时又能够为学生高中函数的学习奠定良好的数学基础。

一、变式教学法的运用

为了避免学生不知道为什么做题,只知道一味的去做题,陷入题海战的现象发生,教师可以根据人教版线性函数教学模块的安排来引导学生,参照“实例引入--概念推出--图像画法--性质归纳--综合应用”的顺序,以引导学生进行函数概念分析、性质的归纳和应用,以及画法等环节作为教学的重点,提高学生的做题效率,同时使学生更容易的接受和理解初中线性函数问题。例如,在讲述一次函数章节时,可以先通过实际现象进行问题的引出,如可以先讲述气温与海拔的关系进而引出一次函数,并通过多个生活常见实例进行一次函数的定义。得到y=kx+b((k≠0)k,b为常数)的一次函数公式后,再逐步深入讲解。当b=0时,则得到y=kx(k≠0)称之为正比例函数,当b≠0时,通过具体的函数实例与图像进行进一步探讨。如y=2x与y=2x+3这样的一次函数,通过绘画图像并总结与相应的特点与性质,只有清楚了相关函数的特点,就能在以后的函数中建立相应的函数解题模型与方法。

作者:郑文敏 单位:内蒙古赤峰市克什克腾旗经棚二中

如何能够通过一种教学方式使得学生在教学过程中参与度提高,对教学内容的兴趣也提高并且能够时常激发学生的好奇心和新鲜感以及他们的求知欲,同时又能达到多题重组以及一题多用的目的。而这种通过对数学中的定理和命题以不同层次、不同背景、不同角度以及不同情形来揭露问题本质,让学生看到不同知识点之间的内在联系的教学方式,我们称之为变式教学。下面是通过应用二次函数的顶点坐标求最值的例子来说明上面的理论:某水果批发商以每箱40元批发一批苹果,若以50元每箱的价格卖出去,一天平均可以卖出90箱,如果每箱的卖价提高1块钱,则平均每天就会少卖3箱。假设卖价每箱为x元,批发商每天的销售利润为y元则:

(2)销售单价是__元时,该批发商获利最大,此时最大利润是__。变式一:如果以“每箱苹果价格每减少1块钱,平均每天就会多卖出3箱”来代替“每箱苹果的价格每增加1块钱,平均一天就会少卖出3箱”,那么又会得出什么样的结果?变式二:如果用“每箱苹果价格每增加10块钱,每天就是少卖3箱苹果”来替换“每箱苹果每增加1块钱,每天就会少卖3箱”,这样会得出什么样的结果?通过这种针对同一题目做条件上的变化的教学方式,不仅使学生更好地理解和体会出数学建模思想,而且使学生对这一类型的问题的理解得到加深。

四、结语

三、函数图像解读法的应用

二、简约式教学法的运用

(1)销售利润y=__;

Copyright © 2003-2015 All rights reserved.http://www.go51688.cn香港最快开奖结果直播,香港最快开奖结果直播,香港最快开奖现场直播版权所有